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ABSTRACT

STUDIES ON NONEQUILIBRIUM PHENOMENA IN
SUPERSONIC CHEMICALLY REACTING FLOWS

This study deals with a systematic investigation of nonequilibrium processes in supersonic
combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate
supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation,
for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to
advance the governing equations in time, until convergence is achieved.

For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical
reactions are investigated. Results obtained for specific conditions indicate that the radiative
interactions vary substantially, depending on reactions involving HO, and NO species, and that
this can have a noticeable influence on the flowfield.

The second part of this study deals with premixed reacting flows under thermal nonequilib-
rium conditions. Here, the critical problem is coupling of the vibrational relaxation process with
the radiative heat transfer. The specific problem considered is a premixed expanding flow in a
supersonic nozzle. Results indicate the presence of nonequilibrium conditions in the expansion
region of the nozzle. This results in reduction of the radiative interactions in the flowfield.

Next, the present study focuses on investigation of non-premixed flows under chemical
nonequilibrium conditions. In this case, the main problem is the coupled turbulence-chemistry
interaction. The resulting formulation is validated by comparison with experimental data on
reacting supersonic coflowing jets. Results indicate that the effect of heat release is to lower the
turbulent shear stress and the mean density. The last part of this study proposes a new theoretical
formulation for the coupled turbulence-radiation interactions. Results obtained for the coflowing
jets experiment indicate that the effect of turbulence is to enhance the radiative interactions.
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Chapter 1

OVERVIEW AND RATIONALE

In recent years there has been a renewed interest in the development of a hypersonic
transatmospheric aerospace vehicle capable of flying at sub-orbital speeds. A hydrogen-
fueled supérsonic combustion r'amjet (scramjet) engine is a strong candidate for propelling
such a vehicle. The airflow is compressed inside the engine inlet and the supersonic
combustion takes place inside the scramjet combustor. After this, the burned gases
are expanded through the nozzles, followed by the undersurface of the vehicle. For
a better understanding of the complex flowfield in different regions of the engine. both
experimental and computational techniques have been employed. The complexity of these
flows makes traditional wind tunnel tests quite difficult. However advances in computer
architecture and eflicient algorithms, make it possible to numerically investigate the flow
in various sections of the scramjet module. Therefore, Computational Fluid Dynamics

(CFD) is an extremely valuable tool for numerical simulation of supersonic combustion.

i

The flowfield in the combustor and nozzle sections of the scramjet is characterized
by very short residence times. This could lead to chemical nonequilibrium, since the
chemical reaction time will be of the same order of magnitude as the flow residence
time. Furthermore, the scramjet flowfield is characterized by diffusive or non-premixed
burning. However, premixed flows can be considered for preliminary studies, as well as
for flow analysis in detonation wave engines. This lays the foundation for the present

work, which is carried out in a systematic manner.
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In the case of premixed flows, the air and fuel are thoroughly mixed in the required
stoichiometric proportion, prior to combustion. Uncertainty in the choice of appropriate
chemistry models can affect predictions of ignition delay. This underlines the need
to study effects of chemical kinetics. Furthermore, this high enthalpy gaseous mixture
encounters very short reéidence times and wide temperature and pressure variations. This
could cause thermochemical nonequilibrium conditions. In addition, the combustion of
hydrogen and air in the scramjet combustor results in absorbing-emitting gases such as
water vapor and hydroxyl radicals. Existence of such gases makes it necessary to include

the effect of radiation heat transfer.

The objective of the first part of this study is to investigate premixed flows under-
going finite rate chemical reactions. Here, the key problem is to determine the impact
of chemical kinetics on the radiative interactions. The specific problem considered is
the premixed flow in a channel with a ten-degree compression ramp. Three different
chemistry models are used, accounting for increasing numbers of reactions and partici-
pating species. Two models assume nitrogen as inert, while the third chemistry model
accounts for nitrogen reactions and NOy formation. The tangent slab approximation is
used in the radiative flux formulation. A pseudo-gray model is used to represent the
absorption-emission characteristics of the participating species. Résults obtained for spe-
cific conditions indicate that the radiative interactions vary substantially, depending on
reactions involving HO, and NO species. and that this can have a noticeable influence
on the flowfield. This provides the analytical tools required for further investigation of

nonequilibrium processes in supersonic combustion.

The objective of the second part of this study is to investigate premixed reacting
flows under thermal nonequilibrium conditions. Here, the critical problem is coupling of

vibrational relaxation process with the radiative heat transfer. This has been implemented
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in a unique manner. The specific problem considered is the premixed expanding flow in
a supersonic nozzle. The reacting flow consists of seven species. one of which is the inert
N, molecule. The thermal state of the gas is modeled with one translational-rotational
temperature and five vibrational temperatures. The harmonic oscillator model is used
in the formulation for vibrational relaxation. Results obtained for this case indicate the
presence of nonequilibrium in the expansion region. This, in turn, reduces the radiative

interactions and can have a significant influence on the flowfield.

In the case of non-premixed flows, the engine efficiency is strongly influenced by
turbulent mixing of the fuel and oxidizer and its effect on chemical reactions. A variety of
turbulence models can be applied to the analysis of the scramjet flowfield. Most of these
models assume the turbulence to be isotropic. However, the occurrence of heat release due
to chemical reactions. and the presence of shocks. could lead to anisotropic turbulence.
This effect can be simulated by the Reynolds Stress models. Consequently, the objective
of the third part of this study is to investigate non-premixed flows undergoing chemical .
nonequilibrium. A differential Reynolds Stress turbulence model has been applied to the
Favre-averaged Navier-Stokes equations. An assumed Beta Probability Density Function
is applied to account for the chemical source terms in the conservation equations. The
resulting formulation is validated by comparison with experimental data on reactiﬁg
supersonic coflowing jets. Results obtained for specific conditions demonstrate that the

effect of chemical reaction on the turbulence is significant.

As stated earlier, the combustion of hydrogen and air in the scramjet combustor re-
sults in gases such as water vapor and hydroxyl radicals. Occurrence of such absorbing-
emitting gases in the turbulent flame. implies the need to simulate the effect of radiative

interactions. Thus, the objective of the last part of this work is to investigate turbulent
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radiating flames. Here, the unsolved problem is the coupled turbulence-radiation inter-
action. for which a novel theoretical formulation has been proposed. Results obtained
for the coflowing jets experiment indicate that the effect of turbulence is to enhance the

radiative interactions.

The explicit, unsplit MacCormack finite-difference scheme is used to advance the
governing equations in time, until convergence is achieved. The chemistry source term
in the species equation is treated implicitly to alleviate the stiffness associated with fast
reactions. Details of the theoretical formulations along with the methods of solution,
are given in the ensuing chapters. Premixed flows are discussed in Chaps. 2 and 3.
Chemical nonequilibrium is dealt with in Chap. 2, while thermochemical nonequilibrium
receives attention in Chap. 3. An exposé of non-premixed flows is given in Chap. 4. The

computational results obtained are presented and discussed in Chap. 5.
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Chapter 2

PREMIXED CHEMICAL NONEQUILIBRIUM FLOWS

In this chapter, the chemical nonequilibrium phenomena pertaining to premixed.
supersonic reacting flows are discussed. First, the problem is introduced. Then, the
relevant literature is reviewed and the physical model is described. This is followed by

a layout of the governing equations. After this. the method of solution is discussed.

2.1 Introduction

In the case of premixed flows, the air and the fuel are thoroughly mixed in the required
stoichiometric proportion, prior to combustion. This gaseous mixture encounters very
short residence times (O[1.0 msec]). which will be of the same order of magnitude as the
chemical reaction time. Uncertainty in the choice of appropriate chemistry models can
affect predictions of ignition delay. Thié underlines the need to study effects of chemical
kinetics. In addition, the combustion of hydrogen and air in the scramjet combustor
results in absorbing-emitting gases such as water vapor and hydroxyl radicals. Existence

of such gases makes it necessary to include the effect of radiation heat transfer.

2.1.1 Literature Survey

Several computer programs have been developed and applied to gain more insight
into the problem involving a scramjet flowfield [1-3]". Kumar [1] carried out numerical
simulations of scramjet inlet flowfields. Drummond et al. [2, 3] developed a spectral

method code for predicting the behavior of supersonic reacting mixing layers.

* . . .
Numbers in brackets indicate references.
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Considerable work has been done in the past decade to model the chemical kinetic
mechanism of the hydrogen-air system [4-7]. A simple two-step finite-rate chemistry
model was used by Chitsomboon et al. [4] as well as by Rogers and Schexnayder [5].
A complete model would involve some 60 reaction paths. making numerical solution
very difficult, if not impossible [5]. The two-step model [4, 5] has only four species
and two reaction paths, and is used for preliminary studies. However, there are several
limitations to this model, such as ignition-phase inaccuracy (i.e. a much shorter ignition
delay), and overprediction of flame temperature as well as longer reaction times. Recent
improvements in this area include an 8-species, 14-reaction model used by Shuen and
Yoon [6]. While none of these aforementioned models account for nitrogen reactions (by
assuming nitrogen was inert), recent developments in this area include a IS5-species,
35-reaction model reported by Carpenter [7]. This latter model accounts for NOy

formation and other nitrogen reactions in the hydrogen-air system.

There are several models available in the literature to represent the absorption-
emission characteristics of molecular gases [8-13]. Sparrow and Cess [8] wrote a
definitive text on radiative heat transfer. Tien [9] as well as Cess and Tiwari [10]
investigated thermal radiation properties of gases. Band models for infrared radiation

were reviewed by Edwards [11] and Tiwari {12, 13].

One- and two-dimensional radiative heat transfer equations for various flow and
combustion related problems are available [14-22]. Tsai and Chan [14] studied multi-
dimensional radiative transfer. Chung and Kim [15] reported a solution for two-
dimensional radiation using the finite element method. Coupled radiation and convection
were investigated by Im and Ahluwalia [16] as well as Soufiani and Taine [17]. Tiwari
[18, 19] studied transient radiative interactions in gases, Mani et al. [20-22] obtained

numerical solutions of supersonic chemically reacting and radiating flows.
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As the above literature survey clearly indicates. there is a need for additional studies
in this key field. The objective of this chapter is to determine the impact of chemical
kinetics on the radiative interactions. The specific problem considered is the premixed
flow in a channel with a ten-degree compression ramp. Three different chemistry models
are used, accounting for increasing number of reactions and participating species. Two
models assume nitrogen as inert, while the third chemistry model accounts for nitrogen
reactions and NOy formation. The tangent slab approximation is used in the radiative
flux formulation. A pseudo-gray model is used to represent the absorption-emission

characteristics of the participating species.

2.1.2 Discussion of Physical Model

The specific problem considered is the supersonic flow of premixed hydrogen and
air (stoichiometric equivalence ratio ¢ = 1.0) in a channel with a compression corner on
the lower boundary (Fig. 2.1). The physical dimensions considered for obtaining results
areL=2cm.. X; =1 cm.. Xa =2 cm., Ly = Xy + X3 =3 em., and o = 10 degrees. The
flow is ignited by the shock from the compression corner. The inlet conditions which
are representative of scramjet operating conditions, are P, = 1.0 atm., T, = 900 K and
M., = 4.0. This same flow has been computed by several researchers [4, 6, 20-22] as

'

a benchmark case.

2.2 Basic Governing Equations

The physical model for analyzing the flowfield in a supersonic combustor is described
by the Navier-Stokes and species continuity equations. For two-dimensional flows, these

equations are expressed in physical coordinates as [2, 3]

U N ar N oG
N dux ay

+H = 0 2.1



A 40
M_4 a=10
T =900 K : L=2cm
P=1atm LX=30m
— Xy=1cm
B
Xo =2cm

r"
m————em— =

#>|< Xo : >

!

Fig. 2.1 Physical model for premixed chemical nonequilibrium



where vectors U/, .G and H are written as,

r
pu
U =1 pv
plo
Lol ]
[ pu
2
pus 4 pt Ty
I = puv 4 Try

(pF 4 pu+ 1oy + Tn/' + qer + Ry
puf; —pl) e
pr
pun 4 Ty
G pr* p Ty
(pF 4 pYv + Tryut 4+ Ty 4 Gey + qRy
pef; —pD%E

Il

H = 0 (2.2)

The viscous stress tensors in the /" and (¢ terms are given as,

Try = \(g'l’ + %) - 2,,,%% (2.3a)
= n(5+5) | (23b)
Tyy = —\(% + g:—/) — ‘)//% (2.3¢)
where A\ = —%/z invokes the Stokes™ hypothesis. This assumption of zero bulk viscosity

is true for an incompressible gas, as well as for boundary layer type flows [23-25]. The

quantities ger and qey in the I and (7 terms are the components of the conduction heat

flux and are expressed as

Ger = _'/’—“‘.‘ )

or

v = 4/(()1/

(2.4)
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The molecular viscosity ;¢ is evaluated from Sutherland’s formula [22]. The total

internal energy I in Eq. (2.2) is given by

m

, r u? 4 v?

L = - + =+ Z’u.f;‘ ‘ (2.5)
1=1

Specific relations are needed for the chemistry and radiative flux terms. These are

discussed in the following sections.
2.3 Chemistry and Thermodynamic Models

Chemical reaction rate expressions are usually determined by summing the contribu-
tions from each relevant reaction path to obtain the total rate of change of each species.
Fach path is governed by a law of mass action expression in which the rate constants
can be determined from a temperature depeﬁdent Arrhenius expression. The reaction

mechanism is expressed in a general form as

ns ns

’ l-‘j' ” .
Z'?ij( j ﬁ Z')'ij(.i , 1= Lo (2.6)

=1 1=1

where ns = number of species and 7 = number of reactions. The chemistry source
terms 1»; in Eq. (2.2) are obtained, on a mass basis. by multiplying the molar changes
and corresponding molecular weight as

nr ns. o

=1 m=1

ns
— b H ("3{”’} Jj = lns (2.7)

m=1

The reaction rate constants k; and ky;, appearing in Eqs. (2.6) and (2.7), are deter-

mined from an Arrhenius rate expression as

by, = At ( ) 23)




Table 2.1 Hydrogen-Air Mechanism

12

REACTION A(moles) N(cm?) E(calories/gm-mole)

) 0, + Hy, & OH + OH 1.70x 10"} ' 0 48150
2) O,+H&e& OH+O 1.42% 10M 0 16400
3) H, + OH & H,O + H 3.16x 107 1.8 3030
4) Hy + 0« OH+O 207x10M 0 13750
(%) OH +OH & H,0+ 0 5.50% 10"} 0 7000
(6) H+OH+M < H,0+M 221% 1022 -2.0 0
@) H+H+M& H, + M 6.53%x10!7 -1.0 0
(8) H+0; +M & HO; + M 3.20x 10'8 -1.0 0
9) OH + HO; « 0, + H,0 5.00x 10 0 1000
(10 H +HO; & Hy + O 2.53x 10"} 0 700
an H + HO; & OH + OH 1.99% 10" 0 1800
(12) O+ HO; & O3 + OH 5.00%x 109 0 1000
13) HO; + HO; & Oy + HO, 1.99% 10'? 0 0
(14 Hy + HO; & H + 11,0, 3.01%x 10" 0 18700
(15) OH + H;0; & H,O + HO, 1.02x 10" 0 1900
(16) H + 1,0, & H,O +0OH 5.00%x 10" 0 10000
a7 O + H,0, & OH + HO, 1.99% 10'? 0 5900
(18) HyO + M & OH+ OH +M 1.21x 10" 0 45500
(19 O, +M&80+0+M 2.75% 10" -1.0 118700
20) . Na=M& N+N+M 3.70x 102! -1.6 225000
2n N+ 0y & O+ NO 6.40x% 10" 1.0 6300
(22) N +NO & O+ Ny 1.60x 10" 0 0
(23) N+OH & H+ NO 6.30% 10" 0.5 0
24) H+NO+M & HNO + M 5.40%10'" 0 -600
25) H + HNO & H; + NO 4.80% 10'2 0 0
(26) O + HNO & OH + NO 5.00% 10" 0.5 0
(X)) OH + HNO & H,O + NO 3.60%x 10" 0 0
(28) HO; + HNO & H,0y + NO 2.00x 10'? 0 0
29 HO,; + NO & OH + NO; 31.43x% 10" 0 -260
(30) H + NO; & OH + NO 3.50% 10" 0 1500
a3n O+ NO; & 0 + NO 1.00%x 10" 0 600
(32) NO, +M & O+NO+M 1.16x 10'6 0 66000
(33) M+ OH+NO & HNO; + M 5.60% 105 0 -1700
(34 M+ OH+NO; & HHNO; + M 3.00%10'" 0 -3800
35 OH + HNO; & H;0 + NO, 1.60x 10" 0 0

* global 2-step model *
N Hy; + Oy 4 20H 11.4x10% -10.0 4865
2" 20H + Hy & 2H,0 2.50% 109 -13.0 42500




2.4 Radiative Interactions

Evaluation of the energy equation presented in Eq. (2.2) requires an appropriate
expression for the radiative flux term, qp. Therefore, a suitable radiative transport model
is needed. Various models are available in the literature to represent the absorption-
emission characteristics of the molecular species [22]. The equations of radiative transport
are expressed generally in integro-differential forms. The integration involves both
the frequency spectrum and physical coordinates. In many realistic three-dimensional
physical problems, the complexity of the radiative transport equations can be reduced by
introduction of the tangent-slab approximation. This approximation treats the gas layer

as a one-dimensional slab in evaluation of the radiative flux (Fig. 2.2).

Detailed derivations of radiative flux equations for gray as well as nongray radiation
have been carried out previously [22]. For a multiband gaseous system, the nongray
radiative flux in the normal direction is expressed as

1=1

A; [i“"‘ (y — ~)} dz

2 L

I deg, ()] 5 |3 voi, i
4/,, [ d= ]""’[57(4*!/)]& | (2.15)

Information on the band absorptance A; and other quantities are available in the cited

references.

For a gray medium, the spectral absorption coeflicient ., is'independent of the wave

number, and an expression for the radiative flux is obtained as [8, 22]

3k(y—12)

y
qr{y) = 1 —c2 -+ —I/ [e(z) —e1]e” 7 wdz
Jo

<

£ 3n(y—2)
— / [e(z) —eae™ 7 m/:} (2.16)
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It is computationally more efficient to use Eq. (2.16) in the general energy equation
than Fq. (2.15). This is because by differentiating Eq. (2.16) twice (using the Leibnitz
formula) the integrals are eliminated and the following inhomogeneous ordinary differ-

ential equation is obtained:

| qr(y) 9 ) = 2l
—_—— — - 1 —_ —
w2 dy? 4 IR nody

(2.17)

The solution of Eq. (2.17) requires two boundary conditions which are given for non-

black diffuse surfaces as [8]

1 ! t {dqn
(;l‘ - 5) l[ar(y)) =0 — I [—(l—”— T 0 (2.18a)

R 1 [dqr
(-(—; — }2) [qR(?/)]g/:" + :;—I:li (]?/

For black surfaces. the emissivity ¢; = 2 = 1 and Eqs. (2.18) reduce to simpler forms.

=0 (2.18b)

y=1"L

An appropriate model for a gray gas absorption coefficient is required in Egs. (2.16)-
(2.18). This is represented by the Planck mean absorption coefficient, which is expressed

for a multi-band system as [8, 22}

=

D)
aT'(y)

ew, (T).5:(T) (2.19)
1=1

K — l.‘.p -

It should be noted that «p is a function of the temperature and the partial pressures I’;

of the species.

2.5 Method of Selution

The flowfield in the combustor is represented by the Navier-Stokes equations and
by the appropriate species continuity equations. The solution scheme is based on the
SPARK code [2—4, 7. 20-22] available at NASA Langley Research Center. The finite-

difference method using the explicit. unsplit MacCormack scheme [26] is used to solve
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the governing equations. Incorporation of the finite-rate chemistry models into the fluid
dynamic equations can create a set of stiff differential equations. Stiffness is due to a
disparity in the time scales of the governing equations. In the time accurate solution. after
the fast transients have decayed and the solutions are changing slowly, taking a larger
time step is more efficient. But explicit methods still require small time steps to maintain
stability. One way around this problem is to use a fully implicit method. However. this
requires the inversion of a block multi-diagonal system of algebraic equations, which is
also computationally expensive. The use of a semi-implicit technique [27, 28] provides
an alternative to the above problems. This method treats the source term (which is the

cause of the stiffness) implicitly, and solves the remaining terms explicitly.

The governing equations are transformed from the physical domain (x, ») to a
computational domain (¢ , 5), using an algebraic grid generation technique similar to the
one used by Smith and Weigel [29]. In the computational domain, Eq. (1) is expressed

as [30]

ou - oF oG
T ta e H =0 (2.20)

where

i =1, F = Fy, -G,

(= Goeg—TFye . 1 = 1]

J o= weyy — yery (2.21)

Once the temporal discretization has been performed, the resulting system is spatially
differenced using the explicit, unsplit MacCormack predictor-corrector scheme [26]. This

results in a spatially and temporally discrete, simultaneous system of equations at each
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grid point. Each simultaneous system is solved, subject to initial and boundary conditions,
by using the Householder technique [31, 32]. At the supersonic inflow boundary.
characteristic flow quantities are specified as freestream conditions. At the supersonic
outflow boundary, non-reflective boundary conditions are used, i.e. flow quantities are

extrapolated from interior grid points.



Chapter 3

PREMIXED THERMOCHEMICAL NONEQUILIBRIUM FLOWS

In this chapter, the thermochemical nonequilibrium phenomena pertaining to pre-
mixed, supersonic reacting flows are discussed. First, the relevant literature is reviewed.
and then the physical models used in this study are described. This is followed by a

description of the governing equations. After this, the method of solution is discussed.

3.1 Introduction

As stated in Chap. 2, in the case of premixed flows. the air and the fuel are thor-
oughly mixed in the required stoichiometric proportion, prior to combustion. This high
enthalpy gaseous mixture characterized by very short residence times and wide tempera-
ture and pressure variations. This could lead to thermochemical nonequilibrium. In order
for molecules to dissociate, they must be excited in all three energy states (rotational,
translational and vibrational). After dissociation, the translational and rotational temper-
atures relax towards equilibrium faster than the vibrational temperature. This makes the
study of vibrational nonequilibrium an important issue. Furthermore, the combustion of
hydrogen and air in a scramjet combustor results in absorbing-emitting gases such as wa-
ter vapor and hydroxyl radicals.. Existence of such gases makes it necessary to consider

the effect of radiative heat transfer.

In the presence of a radiation field, if the energy exchange is dominated by a
collisional process, then the conditions of local thermodynamic equilibrium (LTE) exist.

Otherwise, the system is considered to be in the state of non-local thermodynamic

18
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equilibrium (non-LTE or NLTE). Further discussion on this is provided in the section

on radiative interactions.

Several theoretical and computatiénal studies on the nonequilibrium flow of air have
been cérried out [33—40]. Blythe [34, 35] carried out analytical stﬁdies of nonequilibrium
flows in nozzles. Stollery and Park reported one of the first numerical solutions to the
vibrational relaxation problem. Cheng and Lee [37] investigated freezing effects of
chemical nonequilibrium flows in nozzles. A comprehensive review of the literature
prior to 1968 was undertaken by Hall and Treanor [38]. Further numerical results for

thermochemical nonequilibrium were discussed by Anderson [39, 40).

Vibrational relaxation effects are important in mixtures of combusting gases [41-43].
The relaxation rates of some gases were discussed by von Rosenberg et al. [41, 42] and
by Kung and Center [43]. Vibrational relaxation effects are also important in lasers
[44-47]. Kothari et al. [44] obtained numerical simulations for chemical lasers. Gas
dynamic lasers were discussed by Anderson [45], by Reddy and Shanmugasundaram

[46]. and by Wada et al. [47].

In recent years, thermochemical nonequilibrium effects in atmospheric re-entry flows
have received considerable attention [48-53]. Rakich et al. [48] studied flows over blunt
bodies. Lee [49] discussed the basic governing equations. Gnoffo [50] developed the
LAURA code for computing reentry flows. Candler and MacCormack [51] focused on
ionization effects. Gnoffo et al. [52] comprehensively laid out the conservation equations

for thermochemical nonequilibrium. Desideri et al. [53] discussed benchmark results of

a workshop on hypersonic reentry flows.

The combustion of hydrogen and air in the scramjet combustor results in gases such

as water vapor and hydroxy] radicals. It is known that the presence of water vapor gives
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rise to rapid relaxation rates [41, 42, 54, 55]. Finzi et al. [54] and Center and Newton [55]
investigated the vibrational relaxation effects of water vapor. The vibrational relaxation
effects of hydrogen-air combustion have been very briefly touched upon recently by

Grossmann and Cinella [56, 57].

Furthermore, water vapor is an absorbing-emitting gas. Existence of such gases
makes it necessary to include the effect of radiation heat transfer. Coupled radiative
transfer with chemical nonequilibrium has been studied earlier in Chap. 3 of this study.
The effect of vibrational nonequilibrium upon radiative energy transfer in hot gases has
also been investigated [58-61]. Tiwari and Cess [58] discussed a new formulation for
the non-LTE radiation. Goody [59] studied radiation effects in the upper atmosphere.
Coupled radiative and vibrational relaxation were discussed by Gilles and Vincenti [60].

Radiative cooling effects were investigated by Wang [61].

As this literature survey clearly indicates, there is a need for additional investigation
in this critical area. The objective of this chapter is to study the coupled interaction of
vibrational relaxation and radiative heat transfer, in the presence of finite rate chemical
reactions. The thermal state of the gas is modeled using one translational-rotational
temperature and five vibrational temperatures. The harmonic oscillator model is used in
the formulation for vibrational relaxation. The radiative interacti'ons are investigated in

both streamwise and transverse directions. The tangent stab approximation is used in the

radiative flux formulation. An optically thin assumption is made in the non-LTE model.

Two physical problems are considered for this study. The first one is reacting airflow
in a hypersonic nozzle (Fig. 3.1), which is a benchmark case [S3] used for code validation.

Inlet reservoir conditions for this flow are I, = 1.53 % 10* Pa, T, = 6500 K.



Py = 1.53x10° Pa o

To = 6500K
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Fig. 3.1 Schematic diagram of nozzle for air chemisoy
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Based on validation of the code for the problem discussed above, the second physical
problem considered is the supersonic flow of premixed hydrogen and air (stoichiometric
equivalence ratio ¢ = 0.3) in an expanding nozzle (Fig. 3.2). The physical dimension
considered for obtaining results is Lx = 2 m. The flow is ignited by the high enthalpy of
the flowfield. The inlet conditions which are representative of scramjet combustor exit
conditions, are s = 0.8046 atm, 7o, = 1890 K and M. = 1.4. A one-dimensional flow

has been computed by Grossmann and Cinella [56. 57].
3.2 Governing Equations

The Navier-Stokes and species continuity equations used in this study have already
been discussed in Sec. 2.2 of previous Chap. 2. The additional governing equations,

different from Eqs. (2.1) and (2.2), are described as

7q. (2.2) ]

H

il
D

(3.1)

The total internal energy F in Eq. (2.2) is modified as

mn m

. r u? 4 v?
E = - o Z]hjf., + Z}_[,-_E‘,j (3.2)
1= 1=

where Fy- is the total vibrational energy. Specific relations are needed for the chemistry

and radiative flux terms. These are discussed in the following sections.
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The chemistry and thermodynamic model used in this study is the same as described
in Sec. 2.3 of Chap. 2. A truncated 7-species, 7-step chemistry model, derived from
Table 2.1, is used in this study. In order to account for the effect of ‘vibrational relaxation
on the chemical reaction rates, the equivalent temperature T¢quir. in Egs. (2.8)-(2.10) is

expressed as [62]

Tequin. = T Ty (3.3)

3.3 Thermal Nonequilibrium

A simplified thermodynamic model for the mixture of gases is necessary. Each
species contains translational and rotational energy states in thermodynamic equilibrium
and the vibrational energy is described by a harmonic oscillator, which is not in equi-
librium [24, 62]. A Landau-Teller model is used to determine the effect of vibrational
relaxation on the energy production. Furthermore, ionization effects are ignored. It

should be noted that monoatomic species like O and H are not vibrationally excited.

For the range of temperatures considered in this study. a harmonic oscillator can be

assumed. Accordingly, the vibrational source terms in Eq. (3.1) are expressed as

LY. — Ly
o o= i TE (3.4)
Nei
where
18i0i
By = o 3.5
v cap(0,/T) = 1 (3-3)
The asterisk * in Eq. (3.5) denotes the equilibrium value and
0. — h (7-_w,j (3.6)

where ¢ = Hj, 02, H,0O, OH and N,.
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In Eq. (3.4), the equivalent relaxation time 7.; of a mixture of gases (+ = 1.)) is

given by the linear mixture rule {41, 42]

L h + J2 n I3

oyl

Nei Neil Nei2 Neid Neig

3.7

which accounts for the acceleration of vibrational relaxation observed in the presence of

H,0 [41-43]. Analogy may also be drawn to electrical circuits. with resistors in parallel.

In Eq. (3.7), the local vibrational relaxation time 7.;; of a molecular collision pair

(. ) is given by an empirical correlation [63], curve-fitted from experimental data as

neis = p~ eapl0.00116, 0! (117

—0.015,") — 18.42] (3.8)
where
Iii-flj; '
o= (3.9
ft fii + 1155 )

In Eq. (3.8), st is the effective molecular weight for a pair of colliding molecules (7. 7).
Values of #,; for N;, O and H,O are obtained from [64] and for H, and OH from [65]
and [66], respectively.

3.4 Radiative Interactions

i

Evaluation of the energy F in Eq. (2.2) requires an appropriate expression for the
radiative flux term gp. This radiation is emitted and absorbed by the “photon fluid” [60].
If the photon field is in equilibrium with the vibrational and translational fields, then
the radiation is said to be of the Local Thermodynamic Equilibrium (LTE) type. This
means that the LTE process is collision dominated. On the other hand, if the photon
field also undergoes nonequilibrium, then the radiation is considered to be of the Non-
local Thermodynamic Equilibrium (NLTE) type. This implies that the NLTE process is

emission dominated.



26

:3.4.1 Local Thermodynamic Equilibrium

The LTE radiative transfer model is the same as discussed in Sec. 2.4 of Chap. 2 and
so it is not repeated here. This method of coupling the LTE radiation with the governing

equations, is similar to a formulation discussed by Gokcen and Park [67].

3.4.2 Non-local Thermodynamic Equilibrium

The non—LTE radiation model is discussed here. Relevant information on relaxation
processes, nonequilibrium transfer equations and radiative flux equations is provided in
[58]. The basic equations developed can be used to investigate radiative interactions
of gray as well as nongray gases under nonequilibrium conditions. In this study,
however, the nonequlibrium radiative interactions are considered only in the optically

thin conditions. A brief discussion of applicable equations is provided here.

The nonequilibrium radiative transfer equation for two level transitions between

vibrational states may be written as [58-61]

dl,
ds

= rig(Je — 1) (3.10)

where I, is the intensity of radiation. In Eq. (3.10), .J, is the nonequilibrium source

function and is defined as ‘

1, = [;w[ui_‘\_}
N+ e

[dQ [ rglpde
([ [ 1y Boprles)

(3.11)

where (2 is the solid angle, and 13, is the black-body intensity of radiation. It should
be noted that absorption is an equilibrium process, whereas the nonequilibrium influence

comes only through the emission process (source function).
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The time constant 7, in Eq. (3.11) is the radiative lifetime of vibrational states. and

this is expressed as [58]

\ pJ
L scw?('—> S : (3.12)

Ny n
where n denotes the number density of the radiating molecules and S represents the

integrated band intensity of a vibration-rotation band.

The influence of nonequilibrium radiation is most apparent in the optically thin limit,

wherein the divergence of the radiative flux can be expressed as [58]

{ :
ﬂ( fy S
df 1 Nr

) = 3 Amlrul6) — c10(6)] (3.13)

where A, is the band width parameter and 4, is the nondimensional path length. and these
are defined in the cited refefences. It can be seen from Eq. (3.13) that the contribution
of the non-LTE (non-local thermodynamic equilibrium) is obtained simply by adding a
correction involving the nonequilibrium parameter % to the divergence of the radiative

flux.

3.5 Method of Solution

The method of solution used in this study is the same as discussed in Sec. 2.5 of
Chap. 2. Additional details are presented in this section. Only the upper half of the flow
domain is computed, as the flow is assumed to be symmetric about the centerline of a
two-dimensional nozzle. The upper boundary is treated as a solid wall. This implies
a no-slip boundary condition (i.e. zero velocities). The wall temperature and species
mass fractions are extrapolated from interior grid points, by assuming an adiabatic, black
and non-catalytic wall. The pressure is also extrapolated by using the boundary layer
approximations for the pressure gradient. Symmetry boundary conditions are imposed at

the lower boundary. Initial conditions are obtained by specifying freestream conditions
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throughout the flowfield. The resulting set of equations is marched in time, until

convergence is achieved. The details of the radiative flux formulation and method of

solution are available elsewhere [22].
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Chapter 4

NONPREMIXED NONEQUILIBRIUM FLOWS

In this chapter, the chemical nonequilibrium phenomena pertaining to non-premixed,
supersonic, turbulent reacting flows are discussed. First, the relevant literature is re-
viewed, with a view towards presenting the problem statement and scope, as well as
the physical models used. Then, the basic governing equations are described. This is

followed by a discussion of the method of solution.

4.1 Introduction

In the case of non-premixed flows, engine efficiency is strongly influenced by
turbulent mixing of the fuel and oxidizer and its effect on the chemical reactions.
Also, the presence of absorbing-emitting species, like water vapor and hydroxyl radicals,
implies the need to consider radiative heat transfer. The objective of this chapter is to
study the coupled turbulence-chemistry-radiation interactions, in the presence of chemical

nonequilibrium. :

Several experimental and computational techniques have been developed towards a
better understanding of the mixing and burning within a supersonic free shear layer or
jet [3, 68]. The shear layer and the single jet simulate the parallel injection of hydrogen
fuel in a scramjet engine without introducing complexities arising from the combustor
geometry. Drummond [3] presented numerical solutions for a supersonic reacting mixing
layer. Eklund et al. [68] discussed computational and experimental results for coaxial

reacting jets.

29
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A variety of turbulence models [69-74] can be applied to the analysis of the scramjet
flowfield. These range from the simplest mixing length or zero-equation models. one-
equation models and two-equation models, to the most general Reynolds stress turbulence
closures. Eklund et al. [68] simulated subsonic diffusion flames using an algebraic
turbulence model [2]. Due to the limitations of this turbulence model. the effects of
fluctuations of the species concentrations and the temperature, were ignored. Jones
and Whitelaw [69] showed that this underpredicted the extent of combustion. A Direct
Numerical Simulation (DNS) of a reacting mixing layer has been carried out recently by
Givi et al. [70]. The effects of temperature fluctuations was modelled using an assumed
Probability Density Function (PDF) technique. proposed by Frankel et al. [71]. Narayan
[72]. Villasenor et al. [73] as well as Kolbe and Kollmann [74] have applied the two-
equation models for simulating reacting mixing layers. While these are more sophisticated
than algebraic models, they have been developed primarily for incompressible flows,

using a gradient transport hypothesis.

Unfortunately, realistic engineering problems entail “non-gradient” transport [75-78].
This has been observed by Hinze [75], for incompressible flows, in measurements of the
wake of an axisymmetric cylinder. In compressible flows, ‘counter-gradient’ diffusion
has been observed expérimentally by Moss [76]. Also, Libby and Bray [77] predicted
that counter-gradient diffusion can occur due to the effect of the mean pressure gradient.
The two-equation model (‘k-¢* model) neglects terms involving pressure gradients. In
addition to these shortcomings. the two-equation models cannot predict buoyancy effects
and perform poorly fof predicting swirling flows. These defects are eliminated with the

differential Reynolds stress models, as suggested by Hogg and Leschziner [78].

The combustion of hydrogen and air in the scramjet combustor results in absorbing-

emitting gases such as water vapor and hydroxyl radicals. Existence of such gases
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makes the study of thermal radiation from turbulent reacting flows, an important issue.
There are several models available in the literature to represent the absorption-emission
characteristics of molecular gases as described by Mani and Tiwari [22]. Both pseudo-
gray and non-gray gas models have been employed to evaluate the radiative heat transfer
for supersonic combustion. Results of both models were compared and the pseudo-
gray model was found to be computationally efficient. All these studies considered only

laminar flows [22].

However, an important issue for turbulent flames is the effect of turbulénce/radiation
interactions [79-85]. The results obtained by Cox [79} shed some light on radiant
heat transfer from turbulent ﬂamés. Tamanini [80] obtained numérical solutions for
radiation on turbulent fire plumes. Kabashnikov and Kmit [81] investigated the influence
of turbulent fluctuations on thermal radiation. Experimental data on turbulence/radiation
interactions in diffusion flames were obtained by Gore et al. [82], and Jeng and Faeth [83].
Yuen et al. [84] discussed non-gray radiation in the presence of turbulence. Fairweather

et al. [85] investigated radiative heat transfer from a turbulent reacting jet.

Second-order turbulence models have been applied recently to reacting as well as
to compressible flows [86-88]. Chen [86] studied subsonic diffusion flames, using
a Reynolds Stress model. Farschi [87] investigated heat releallse effects in reacting
mixing layers, also using a second order model. Sarkar and Balakrishnan [89] applied

a compressibility correction to the ¢ equation, and observed the correct decrease in

growth rate of compressible mixing layers.

As seen from the above literature survey. there is clearly a need for additional
investigation in this key field. The objective of the present study is to investigate

turbulence-chemistry-radiation interactions in supersonic: hydrogen-air diffusion flames.
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The effects of turbulence on the chemistry and radiation heat transfer, are accounted for
by using an assumed Beta-PDF method. The flowfield in the combustor is represented
by the Navier-Stokes equations and by the appropriate species continuity equations. The
finite difference method using the explicit, unsplit MacCormack scheme is used to solve
the governing equations. A truncated 7-step finite rate chemistry model. derived from
the complete mechanism (Table 2.1) is used here. The radiation model used in this study

is the same as discussed in Sec. 2.4 of Chap. 2.

The physical models used in this study are the Beach and Jarrett-Pitz coaxial jets
experiments [89, 90]. A schematic diagram of these coaxial jets experiments is given
in Fig. 4.1, wherein an inner fuel jet diffuses into an outer air jet. This outer jet is
vitiated with water vapor to enhance the combustion process. The temperature and other
exit conditions for the Beach case are given in Table 4.1. The temperature and other
exit conditions for the Jarret-Pitz experiment are given in Table 4.2. Diagnostics for the

Jarrett case could be more reliable, since the Beach experiment is older by a decade.
4.2 Basic Governing Equations

The physical model for analyzing the flowfield in a supersonic combustor is described
by the Navier-Stokes and species continuity equations [1, 2]. Favre-averaging is used
to derive the turbulent flow equations from the Navier-Stokes equations. This is carried

out as
b= b+ ¢ @.1)
where the mean is expressed as

(4.2)

!
>3]

and ¢ denotes u, v. T and [;.
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Table 4.1 Conditions for the Beach experiment

34

H, Air
Mach No. 2.0 1.9
Temperature 251 K 1495 K
Pressure 0.1 MPa 0.1 MPa
Velocity 2418 m/s 1510 m/s
f-H; 1.0 0.0
-0, 0.0 0.241
f-Nj 0.0 0.478
f-H,O 0.0 0.281

Fuel injector inner diameter, d = 0.009525 m.
Injector lip thickness = 0.0015 m.
Nozzle diameter, D = 0.0653 m.

Table 4.2 Conditions for the Jarrett-Pitz experiment

Hydrogen jet (inner) Air jet (outer) Ambient Air
Mach No. 1.0 | 2.02 0.0
Temperature 545 K 1250 K 273 K
Velocity 1772 mis 1441 m/s 0
Pressure 0.112 MPa 0.096 MPa 0.101 MPa
f-Hj 1.0 0.0 0.0
f-O9 0.0 0.254 0.233
f-N, 0.0 0.572 0.767
f-H,0 0.0 0.174 0.0

Fuel injector inner diameter, d = 0.00236 m.
Injector lip thickness = 0.00145 m.
Nozzle diameter, D = 0.01778 m.
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The density and pressure are time-averaged and are expressed as

p=p +
p = 7 + p” | (4.3)
where by definition
pd = 0 (4.4)
and
o= 0
o= 0 (4.9)

A relationship between time-averaged and density-weighted variables can be obtained

as

$ - ¢ = L2 (4.6)
r

This leads to the averaged continuity, momentum and energy equations being expressed
in tensor notation as [88]

o i)

—_ =0 4.7
ot (f):l‘j ( (4.7)
o) AEmn)  op
al (?:I‘]‘ B ox;

(’)(F,’j - /m;u;-) is
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and
f)(ﬁﬂ') a(ﬁr;.wrj)
TR ¥y
o~ — By — Py — 75 — 75
- O
o(=T — T — i)
Y 3 j
+ (4.9)
(().'I‘j
where the mean heat flux is expressed as
aT
G o= —is (4.10)
dr;
and the turbulent energy flux J2'u' can be obtained as,
F]'u;- = —(7‘-7"1/{_’. + ﬁ,-u'jn;-
T .
u.u _ T
o Y (4.11)
k=1
The averaged species equations in tensor notation are obtained as
~ - —9f -
a(ﬁfk) (7(Fful~j) 6[1)/75% - /’fk“j]
A + _ =
ot Orj A
NTH
+ + 1wy, (4.12)

():I‘A.,'

In order to close Egs. (4.7)-(4.12), it is necessary to provide models or modelled

transport equations for the following quantities :

a. the Reynolds stress tensor 113177 in Eq. (4.8)

b. the turbulent heat flux 7"’ in Eq. (4.1 I)>

c. the turbulent mass flux ;—';: . the turbulent temperature flux /)"_77 , and the turbulent
species flux /TE . all appearing in Eq. (4.0)

d. the turbulent species mass flux 1/;\/; in Eq. (4.12)

e. the mean chemical species production term wy in Eq. (4.12).
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Other terms such as r," ”,,' in Eq. (4.9). are neglected in high Reynolds number turbulence.
4.3 Reynolds Stress Turbulence Model

The exact transport equation for the Reynolds stress u;u')- can be obtained as [75. 88]

e 11 o~
(r)(ﬂ“i”j) . a(“l.-/’lliuj)

(‘)/ (‘).I']f -
— O D

- J
— DU — — PU Uy ——
Pt l():rk Py L();rj

Term 1
+ Ori + Ori _M
! Oy, "dary, dry.
Term 11 Term 111

, dp , Op

—u 2Ly 4.13
EFTI (4-13)
Term TV
where T'erm [ is the production term, i.e.,
Pi; = Taml (4.14)
and T'erm I1] is the viscous dissipation term ¢;; which is modelled as [88]
2 9 '
ST 3 pc (] + 1‘\1{) di; 4.15)

In Eq. (4.15), the turbulent Mach number is defined as [88] ‘

W o
M, = 4.16
’ \[ YR (4.16)

The term ¢ is computed from a transport equation as [88]

d(po) J(p uge) —

1 (:—-
a1 ory. = o Em’;”."“’k
v __62 0((',‘(75%1";1‘/;%)
- (.(2/)7‘_ + S (4.17)
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where the model coeflicients have the following values :

(o = 141, Cp = 190, (0 = 0.15 (4.18)

Term 111 in Eq. (4.13) is the diffusive transport term 751 1 and is modelled as

() [ 0(‘;7”71')

Tijra = =Car == P

+ ar; drj

2wt 2 } 419
A B R (4-19)

where 'y = 0.018.

The last Term IV in Eq. (4.13) can be expressed as the sum of a pressure-strain term
IT;; and a mean pressure gradient term, details of which are given in [88]. The Launder-

Reece-Rodi (LRR) model is applied to the pressure-strain term 11,5, and is expressed as

» , , 1
H i = Cype T 555_,‘ — (3[]’,",' - ﬁl’k;‘.} (4.20)

where ('y = 3.0, ('3 = 0.6 and I;; is given by Eqs. (4.13-4.14).
The turbulent heat flux term in Eq. (4.11) is modelled as a gradient transport term,

— - Cﬂ 1.2 i}:

s &J1 I .
Iu, =

‘ (4.21)

oxr Or;
where ¢/, = 0.09.

The turbulent species flux 1/3[1 in Eq. (4.12). and the turbulent mass flux p"w}, the
turbulent temperature flux o' 7", as well as the turbulent species flux p" . . all appearing

in Eq. (4.6) , are modelled using the gradient transport method from Eq. (4.21), e.g.

(',' L.Q (()_i‘k
cy O

P = (4.22)
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The mean chemical species production term w7 in Eq. (4.12), is modelled using an

assumed Beta-PDF for the temperature fluctuations, i.e.,
+oe ) ,
Wy = / - P(’I") dT , (4.23)

The Beta-PDF is preferred over other distributions because it closely approximates the

actual DNS simulation of scalar mixing, and is expressed as

' Ty —19)"" 0 + )
T _ 0
! (7 ) - F(a) I'(19) (4.24)

where
o = Ty M — (4.252)
s
B = (1 —ﬂ,) M — 1 (4.25b)

7;;'2
The quantity 7}, is the variance of the Beta-PDF. detail of which are given in Sec. 5.3,
and I' is the standard gamma function. Since probability space recognizes only values

from 0 to 1, it is necessary to normalize the mean temperature in Eq. (4.25) as

~ T — T
o = :—IN— (4.26)

’min

,I 'nmx
A very similar analysis can be carried out for the Beta PDF for species fluctuations.

4.4 Radiative Interactions

The radiative heat transfer model used in this study is the same as discussed in

Sec. 2.4 of Chap. 2. Therefore. the relevant details need not be repeated here.

In the present study, the mean ¢p term in Eq. (4.9) is modeled as

+o0
R = /(m-l’('l")d'l‘ (4.27)

where the PDF, P(7") is given by Egs. (4.24)-(4.26). Equation (4.27) is a new and

simple formulation for the coupled turbulence/radiation interactions.
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4.5 Method of Solution

The method of solution used in this study is the same as discussed in Sec. 2.5 of
Chap. 2. Additional details are presented in this section. The upper boundary is treated
as a free boundary, wherein the gradients of all variables vanish. The lower boundary
is the centerline of the axisymmetric flow. Consequently. the normal velocity is zero,
on the centerline. The gradients of all remaining variables on the centerline vanish by
symmetry. Initial conditions are obtained by specifying freestream conditions throughout
the flowfield. An isotropic turbulént shear stress was prescribed as the initial condition
for the Reynolds Stress equations. The resulting set of equations is marched in time,
until convergence is achieved. The details of the radiative flux formulation and method

of solution are available in Mani and Tiwari [22].



Chapter 5

RESULTS AND DISCUSSION

The theoretical formulations described in Chaps. 2. 3 and 4 are applied to obtain
results for nonequilibrium processes in supersonic combustion. The explicit MacCormack
technique has been used to march the governing equations in time, until convergence
is achieved. The two-dimensional Navier-Stokes equations are solved for supersonic
flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for
hydrogen-air systems. This computer program is an extension of the original SPARK code
[2, 3]. Results for the impact of chemical kinetics on radiative interactions are discussed
first, followed by the results for the interaction of thermochemical nonequilibrium and
radiative heat transfer. Results for the turbulence-chemistry as well as the turbulence-

radiation interactions are presented in the third and fourth parts of this chapter.

5.1 Chemical Nonequilibrium and Radiative Interactions

Studies were conducted to investigate the extent of radiative 'heat transfer in super-
sonic flows undergoing hydrogen-air chemical reactions, using three chemical kinetics
models. These chemistry mechanisms account for an increasing number of reactions
and participating species. For the temperature range considered in this study, the im-
portant radiating species are OH and H,O. The gray gas formulations are based on the
Planck mean absorption coefficient which accounts for detailed information on different
molecular bands. The radiative fluxes have been computed using this “pseudo-gray™ for-

mulation. The justification for using this model is provide in Mani and Tiwari [22]. The

41
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three chemistry models are obtained from Table 2.1. The 2—step model is given at the
bottom of that table. The first 18 reactions in this table constitute the 18-step model. The
remaining 17 reactions Nos. (19)—(35) complete the 35-step model. The two-dimensional

problem considered in this study is shown in Fig. 2.1.

Figures 5.1-5.4 show the computed results using a 61x61 grid, for temperature and
pressure as well as H,O and OI1 species mass fractions. The oblique shock igniting the
air-fuel mixture, arises from the compression corner at the lower wall (Fig. 2.1). The
hottest regions in the flowfield are in the upper and lower wall boundary layers. Figures
5.1 and 5.2 show the effect of the three chemistry models on the temperature and pressure
profiles, varying along x at the location y = 0.02 cm. from the lower wall (boundary
layer region). The temperatures in the boundary layer show a gradual increase (Fig. 5.1).
The pressure profiles are plotted at y = 0.13 cm. (inviscid region) and show a sharp

increase due to the shock (Fig. 5.2).

The ignition phase discrepancy oftllé three chemistry models can be seen in Figs. 5.3
and 5.4. The shock is occurring after x/L., = 0.3. However. the 2-step model predicts
ignition before the shock (shorter ignition delay) due to the high temperature in the
boundary layer. On the other hand, the 18-step model predicts a longer ignition delay,
at x/Ly = 0.43 (Fig. 5.3). The 35-step model’s prediction of igniti‘on delay appears to be
an average of the other two models. Although the three models do not differ much in in
prediction of temperature and pressure profiles, they do differ significantly in predictions

of species mass fractions (Fig. 5.4).

In order to resolve this discrepancy, a grid sensitivity study was carried out to examine
whether the grid size affects the flow predictions. The results of three grid distributions

3131, 61x61 and 81x81 are shown in Fig. 5.5, and it appears that the 61x61 grid is
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sufficient for the present study. The grid points are concentrated in the boundary layer

and shock regions.

The reasons for the varying predictions of species mass fraction by thé three chemistry
models was examined further and the results are shown in Figs. 5.6 and 5.7. Figure 5.6
shows that the reaction No. 8 in Table 2.1 is critical in determining the extent of chemical
heat release and H,0 production. Reaction No. 8 deals with production of HO; radical.
This reaction is absent from the 2-step model. while it is common to both the 18-step
and 35-step models. Figure 5.6 shows that the 35-step model experiences nearly a 30%
drop in temperature in the middle of the channel when the rate of reaction No. 8 is
reduced by a factor of 1000 (effectively cutting of the production of the HO; radical).
In contrast, the 18-step model shows a 15% drop in temperature, when subjected to the
same reduction in the rate of reaction No. 8. This shows that the reaction No. 8 controls
the overall H,0O production occurring in Table 2.1. Due to the high temperatures (~3000
K) in the flowfield, there is a pool of highly reactive free radicals like H, O, etc. The HO;
radical is converted to the very reactive OH radical, by the free radicals (reaction Nos.
11 and 12). This establishes the HO, radical as a very important species in promoting
flame propagation in hydrogen-air flames. A similar reaction sensitivity analysis has been
carried out in [91]. Since the 2-step model does not have the HO, radical, it predicts

lesser amounts of OH and H,0.

It was necessary to determine the reason for the higher sensitivity of the 35-step
model to the HO, radical, as compared to the 18-step model. Figure 5.7 shows that the
reaction Nos. 21 and 23 in Table 2.1 are critical in determining the extent of chemical
heat release and H,O production. Reaction Nos. 21 and 23 deal with production of the
NO radical. These reactions are absent from the 2-step and 18-step models, whereas they

play an important role in the 35-step model. Figure 5.7 shows that the 35-step model
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undergoes a 10% reduction in temperature, when the rates of reaction Nos. 21 and 23 are
reduced by a factor of 1000 (effectively cutting off the production of the NO radical).
Due to the high temperatures in the flowfield, the usually inert nitrogen dissociates into
the highly reactive N free radical. This free radical N is then oxidized in reaction Nos. 21
and 23, thereby producing the NO radical. This NO radical converts the HO, radical
into the highly reactive OH radical, through reaction No. 29. This confirms that the NO
radical is a very important species for flame propagation in a hydrogen-fueled supersonic
combustor. Since the 35-step model has the NO radical. it predicts higher amounts of

OH and H,O than the 18-step model.

Based on the above understanding of the chemical kinetics of supersonic hydrogen-
air flames, the radiative interactions were examined. Figure 5.8 shows the profiles of
the normalized streamwise radiative flux qry predicted by the three chemistry models,
along the location y = 0.02 cm. from the lower wall. The ng flux reduces towards
the end of the channel due to cancellation of fluxes in positive and negative directions.
It is seen from Fig. 5.8 that the 18-step and 35-step models predict significantly higher
amounts of gqrx (50% more and 100% more, respectively) than the 2—step model. This is
because radiative heat transfer is a strong function of temperature, pressure and species
concentrations. So, the larger values of radiative fluxes are caused by higher amounts of
H>O concentrations, which in turn, depend on reactions involving HO; and NO species.
Figure 5.9 shows the variations in the normal radiative flux qr, along x, at the location
y = 0.02 cm. from the lower wall. These do not appear to vary significantly between
the three chemistry models. However. in all three cases, the qry value increases rapidly

after the shock.

Figures 5.10-5.13 show the computed results for reacting flows with and without

radiation, for the three chemistry models. It is seen that the 2-step model shows only
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a slight effect of radiative interaction, as compared to the 18-step and 35-step models.‘
The 18- and 35-step models, with radiative interaction, predict lower temperature and
lower H,O and OH concentrations after the shock. This is because.of the gry flux which
reduces the total energy. For reacting flows without radiation, it was seen earlier from
Figs. 5.3 and 5.4 that the 18-step model had a longer ignition delay (ignition at x/Ly
= 0.43), while the 35-step model had a shorter ignition delay (ignition at x/Ly = 0.38).
Another effect of radiative inter-actions‘ seén in Fig. 5.12, is to nullify this difference in
predictions of ignition delay. For both 18-step and 35-step models, with radiation. the
shift in ignition is seen to occur by the same amount, x/Ly = 0.05. No such effect is seen
on the ignition characteristics of the 2-step model. The results of Figs. 5.10-5.13 show
the “cooling effect” of radiative interactions. The heat release from exothermic chemical
reactions usually thickens the boundary layer, but the lower temperatures produced by the
radiative interactions oppose this nonequilibrium effect. Since the ignition temperature

is lowered, the ignition delay is also affected by the radiative heat transfer.

5.2 Thermochemical Nonequilibrium and Radiative Interactions

Studies were conducted to investigate the extent of radiative heat transfer in su-
personic reacting flows undergoing vibrational relaxation. For the temperature range
considered in this study, the important radiating species are OH and HyO. The LTE
(local thermodynamic equilibrium) radiative fluxes have been computed using the same
formulation used in Sec. 5.1 of this chapter. The non-LTE radiative fluxes are calculated
using a new approach discussed in Chap. 3. In order to avoid expensive computer us-
age, the chemistry model used in this study is a truncated 7-species, 7-step mechanism,

derived from the first 7 reactions in Table 2.1. The five chemical species undergoing



67

vibrational relaxation are Hy, O,, 11,0, OH and N,. The monatomic species H and O do

not subscribe to the “dumbbell” theory of harmonic oscillators, and so are in equilibrium.

In order to validate the theoretical formulations discussed in Chap. 3, comparisons
were made with results from a hypersonic workshop [53]. The physical model for this
study is shown in Fig. 3.1. Even though the present study is for H, — air chemistry,
and the results presented in [53] are for N — O3 reactions, this was the best comparison
available. Figure 5.14 shows the qne-dimensional results for translational and vibrational
temperature obtained for air chemistry in an expanding nozzle. A total of 101 grid points
were used in the flow direction. It can be seen from Fig. 5.14 that the thermochemical
nonequilibrium model used in the present study, compares quite favorably with the one
used in [53]. The slight discrepancy in prediction of vibrational temperature Ty is due
to differences in the method of computing the relaxation time. In the present work. the
relaxation time is calculated using a relation given by Millikan [63], whereas the method

used in [53] is based on a relation given by Vincenti and Kruger [24].

The physical model used for the remaining part of this study is the nozzle and
is shown in Fig. 3.2 The first step was to assume chemical nonequilibrium (CNE) in
all cases. Figure 5.15 shows the one-dimensional results, using 101 grid points. for
the temperature and pressure variations along x. The temperat!ures exhibit relaxation
along the nozzle (Fig. 5.15a). The vibrational temperature Ty is shown for the species
(H,0) that exhibits strongest nonequilibrium effect. and it deviates significantly from the
translational-rotational temperature T. This shows that thermochemical nonequilibrium
(TCNE) is still present in the nozzle, and reduces the translational temperature. The

pressure profiles (Fig. 5.15b) do not show any effect of thermal nonequilibrium.
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Based on the above understanding of thermochemical nonequilibrium in supersonic
hydrogen-air flames. the radiative interactions were examined for a two-dimensional flow.
A 101x31 grid was used for this part of the study. Only the upper half of the flow was
computed, since the nozzle is symmetric about the centerline. The results were plotted
after every four grid points. Three y locations were considered, viz. j = 1, j = jmid.
and j = jmax-1, corresponding to the centerline, midway between centerline and wall,
and wall boundary layer. respectively. The local thermodynamic equilibrium (LTE) and
non-LTE results were obtained by using a value of 7 = 5/, = 0.0 and 5.0 respectively,

for the nonequilibrium parameter in Eq. (3.13).

Figure 5.16a shows profiles of streamwise radiative flux using 101x31 and 101x51
grids, for the purpose of a grid resolution study. It appears that the 10131 grid used
in the present study is sufficient. Figure 5.16b shows the profiles of the normalized
streamwise radiative flux qry along two y locations. It should be noted that the radiative
flux at the centerline j = 1. is negligible. and hence is not plotted. It can be seen that the
qrx flux in the wall boundary layer j = jmax—1. (Fig. 5.16¢c) is higher than at the other
two locations. This is due to the adiabatic wall boundary condition, which precludes
ény heat transfer to or from the wall. An important effect of thermal nonequilibrium is
to reduce the radiative interactions. The qry decreases towards the nozzle exit due to

cancellation of fluxes in the positive and negative directions.

Figure 5.17 shows the variations of the normal radiative ﬂu* qry along x, at two y
locations. Here also, the radiative flux at the centerline j = 1, is zero (because of the
symmetry boundary condition) and is not plotted. It can be seen that the qry flux increases
only slightly in the positive y direction, reaching a maximum in the wall boundary layer
(Fig. 5.17b). This is because of the optically thin assumption, which means that there is

negligible loss of radiative flux from the wall to neighboring gas molecules. Also. thermal
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nonequilibrium reduces the radiative interactions. The qgy profiles exhibit another peak
near the nozzle inlet, because of sudden increase in radiating species due to chemical

reactions.

Figure 5.18 shows the temperature profiles along the three y locations. It can be
seen that vibrational nonequilibrium reduces the translational-rotational temperature; The
radiative interactiéns serve to negate this thermal nonequilibrium effect (especially in the
wall boundary layer. Fig. 5.18¢c). The oscillations in the temperature profiles (Figs. 5.18a
and 5.18b), occur only in the presence of radiative interactions. These oscillations are
due to assumption of optically thin radiation. wherein there is a negligible loss of qg to
the wall from the gas molecules. It is interesting to see that this numerical disturbance
is absent at the wall (Fig. 5.18c). It can be seen that the temperature at the midway (j =
jmid) location is higher than at the other two locations. This is because of the heat release
due to chemical reaction. The temperature in the wall boundary layer (j = jmax-1) as seen
in Fig. 5.18c is lower than the centerline temperature. This is because of the adiabatic
wall boundary condition, which prevents heat transfer outside the wall. Consequently,

the wall temperature rises towards the nozzle exit.

Figure 5.19 shows pressure profiles along the x direction. The pressure oscillations
(Figs. 5.19a and 5.19b) occur only in the presence of radiative interactions. This is
because of the optically thin assumption, which means that there is negligible loss of
radiative flux from the wall to neighboring gas molecules. A reduction of pressure due
to vibrational nonequilibrium can be seen. A trend similar to the temperature profiles
(Fig. 5.18) is observed. This is analogous to the thickening of the boundary layer on a

flat plate (i.e. lowering of the pressure) in the presence of thermal nonequilibrium.
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Figures 5.20 shows variations of the vibrational temperature at three y locations. An
interesting effect of radiative interactions is to reduce the vibrational temperature, thereby
negating the effect of thermal nonequilibrium. A similar observation has been made in
[67]. The reduction in vibrational temperature is due to the qrx flux which reduces the

total energy.

Figure 5.21 shows profiles of water mass fraction at three y locations. They follow
a pattern similar to the temperature and pressure profiles (Figs. 5.18 and 5.19). The
peak water production is found to occur at x/Lx = VO.OS. Thus, it can be seen that
the nonequilibrium parameter in Eq. (3.13) serves to illustrate the relative importance
of vibrational relaxation (collision process) over radiative relaxation (emission process).
The non-LTE process is emission dominated. On the other hand, the LTE process is

collision dominated.
5.3 Turbulence-Chemistry Interactions

Studies were conducted to investigate the extent of turbulence-chemistry interactions
in supersonic flows undergoing hydrogen-air chemical reactions. The SPARK code was
modified to include a Reynolds stress turbulence model [89]. The essential modifications
in the present work result in the program’s capability to compute axisymmetric flows and
nonpremixed hydrogen-air combustion. Furthermore. a Beta-PDF has been incorporated
into the computer code. In order to avoid expensive computer usage, the chemistry
model used in this study is a truncated 7-species, 7-step mechanism derived from the
first seven reactions in Table 2.1. The resulting formulation is validated by comparison
with experimental data on reacting supersonic axisymmetric jets. The physical models
considered for this study. deal with the nonpremixed combustion of supersonic coaxial

jets. These are the Beach experiment [89] and the Jarrett-Pitz experiment [90]. Firstly,

C-2
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the computed results for the Beach case will be discussed, and this will be followed by

the results for the Jarret-Pitz case.

Figure 4.1 describes the physical model for the Beach and Jarrett-Pitz experiments.
The temperature and other exit conditions for the Beach experiment [89] are given in
Table 4.1. The outside diameter of the fuel nozzle (d = 0.009525 m.) is used to normalize
the axial and radial profiles. The length of the flow domain is taken to be 28 diameters,
i.e., x = 0.2667 m. Initial profiles for the flow variables are obtained by computing flat
plate solutions. This is carried out separately for the fuel and air streams and then the
two flows are combined. This approach is better than the “ad-hoc™ initial profiles chosen
by several authors [86, 87]. Figure 5.22 shows the initial temperature profile in the radial
direction. The peak temperature is a result of assuming a constant wall temperature of

1700 K for the flat plate flows.

Figure 5.23a shows the density profiles using 61 x61 and 81x81 grids, for the purpose
of a grid resolution study. It appears that the 61x61 grid is sufficient for the present
study. Figure 5.23b shows radial profiles of the major species concentrations at an axial
location of x/d = 8.26. The computed results are compared with experimental data and
the 1, and N profiles show reasonably good comparison at all radial locations. A good
match for the O, profiles can be seen at locations greater than or équal to r/d = 0.6. This
is also the case with the profiles of H,O mass fraction, where the peak of the flame in the
central jet can be observed. Discrepancies between computed and experimental results

can be attributed to inadequate predictions of turbulent mixing and initial conditions.

In order to investigate the extent of turbulent mixing, it is possible to examine a
mixing scalar, known as the mixture fraction f. which is defined as the normalized mass

fraction of an atomic element originating from one of the input streams, viz. usually the
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fuel stream. The variable [ can only vary from zero to one for a two-stream flow. Under
the assumption of equal diffusivities of all species. the mixture fraction is independent of
the progress of the chemical reaction. This is an important characteristic of the mixture
fraction and serves to indicate the extent of mixing. Experimental data for the mixture
fraction are deduced from the measured mass fractions of the major species. using H as

the conserved element, i.e.,

_ + {5 /mo — /7,
/ _ sz ig/ 120 187 11,0 (Sl)

* 2 roc
I nm - T.ﬁf H,0

where superscripts * and oo denote the fuel stream and air stream at the nozzle exit,
respectively. A similar analysis has been presented in [73]. Figure 5.24 shows predicted
and experimental mixture fraction profiles in the radial direction, at the location x/d =
8.26. It can be seen that there is reasonable agreement between the computations and the
experiment, except near the centerline r/d = 0.0. This implies that the turbulent transport
model is satisfactorily predicting the extent of turbulent mixing for regions away from

the centerline.

Figure 5.25 shows the predicted radial profiles of the minor species mass fractions.
The presence of non-negligible amounts of free radicals denotes the extent of chemical
nonequilibrium. Also, higher amounts of O and OH radicals are ‘formed relative to the

H radicals.

Figure 5.26 shows the predicted density profile in the radial direction, at the same
location x/d = 8.26. It can be seen that the density of the inner (fuel) jet is lower than
the outer (air) jet. However. the density decreases in the vicinity of the central jet (r/d =
0.4 — 0.5). This is due to the heat release from the chemical reactions. Figures 5.27a-b
show the radial profile of the normalized turbulent shear stress at the axial location x/d

= 8.26. It is interesting to observe a localized reduction of turbulent shear stress in
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the same region as the density (Fig. 5.26). This is consistent with the Prandtl’s mixing

length model

u - | Ju
— . = 2 5.2
’ f Ay i Dy (-2)
where [ is the mixing length. Equation (5.2) can be expressed as
= | Quldu
= N7 5.3
’ Dy |y ()

Equation (5.3) suggests that if the mean velocity profile is not strongly altered by heat
release, then the turbulent shear stress will decrease with decreasing density. A similar
argument has been presented in {92]. Figure 5.27b illustrates the turbulent shear stress
profiles using two different boundary conditions. viz. zero gradients or zero value at the
boundaries. Figure 5.27c shows that this change in the shear stress boundary condition,

does not produce any appreciable change in the mixture fraction.

The schematic diagram for the Jarrett-Pitz experiment [90] is also given by Fig. 4.1.
The temperature and other exit conditions for this experiment are given in Table 4.2.
The outside diameter of the nozzle (ID = 0.01778 m.) is used to normalize the axial
and radial profiles. The length of the flow domain is taken to be 5.7 diameters, i.e., x
= (0.1016 m. Initial profiles for the flow variables are obtained by computing flat plate
solutions. This is carried out separately for the fuel and air streams and then the two
flows are combined. A fixed location of x/D = 0.85 is chosen since experimental data

are available for CFD code validation.

The mixture fraction is defined in the same manner as in the Beach experiment {89].
Figure 5.28 shows predicted and experimental mixture fraction profiles in the radial

direction, at the location x/D = 0.85. It can be seen that there is reasonable agreement
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between the computations and the experiment. This implies that the turbulent transport

model is satisfactorily predict the extent of turbulent mixing.

Figure 5.29 shows the predicted and experimental radial profiles of the temperature.
The presence of a central peak denotes the main mixing and combustion zone. [t can
be seen that this peak near 1500 K is predicted correctly. Discrepancy in the location
of this peak can be attributed to non-symmetric experimental results. Similar shifting of

temperature peaks has been observed earlier [72].

Figure 5.30 shows the radial profile of the water mass fraction. viz. the flame. A
peak HyO mass fraction is observed at the same location as the temperature peak. A
more diffuse profile after /DD = 0.6 could be achieved, if some OH radical seeding [~

1-3%] were carried out. This would alter the ignition profile. as discussed in Sec. 5.1.

Figure 5.31 shows the radial profile of the normalized turbulent shear stress at the
same axial location x/D = 0.85. It is again interesting to observe a localized reduction of
turbulent shear stress in the same region as the flame. This is because of the reduction

in density due to heat release.

Figure 5.32 shows the radial profile of the normalized right hand side (R.H.S.) of the
turbulent shear Reynolds Stress equation, Eq. (13). It is interesting to note that the initially
isotropic (i.e. initial R.H.S. = 0.0) turbulent shear stress undergoés “nonequilibrium” in
the region of the diffusion flame. This is because, in the flame region, the R.H.S. is non-
zero. Away from the flame, the turbulent shear stress “returns—to—isotrbpy". Therefore,

this can be termed as a “relaxation™ process.

Figures 5.33-5.34 show the effects of three different “pressure-strain™ models on the
flow characteristics. These models are — LRR (Launder. Reece and Rodi), SSG (Sarkar,

Speziale and Gatski), and S-L. (Shih-Lumley). Details of the pressure-strain models are
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available in [93]. Figure 5.33 shows that there is no difference between the effects of the
three pressure-strain models on the normalized turbulent shear stress. Figure 5.34 also
shows no difference in the temperature predictions. This is because the flow considered in
this study does not have very strong anisotropies, and is mainly cbmbustion-dominated.
A similar argument regarding “pressure-strain™ models for diffusion flames has been
presented in [87]. However other kinds of flows, e.g. swirling combustion, could offer

better opportunities for testing these “pressure-strain™ models.

Figure 5.35 shows the 11,0 mass fraction profile, based a preliminary study conducted
on the effect of a multivariate Beta PDF for species fluctuations. Details of this PDF are
given in [94]. A special case of the mixing of two scalars was conducted. The Nj species
mass fraction was one scalar and the sum of the remaining species mass fractions was
the second scalar. It can be seen from Fig. 5.35 that the species PDF in the present form
doés not show an effect on the H,O mass fraction. This is because individual reactions in
the chemistry models respond differently to the PDF. Some reaction rates are accelerated.
while others are slowed down. Furthermore., some critical reactions are absent from the
7-step model used in this study. A sensitivity analysis for hydrogen-air chemical reactions
has been discussed earlier in Sec. 5.1 of this chapter. In addition, chemical equilibrium
has likely been reached (reactions have run to completion), implying that changes to the
R.H.S. of Eq. (4.12) will not produce significant effects. This is very similar to the result
shown in Fig. 5.14, wherein two different methods have been used for computing the
vibrational relaxation time. Despite this, the final equilibrium value of Ty, is nearly the

same in both cases.



HZO mass fraction

112

)
h

— with species PDF
x No species PDF

<
N
1

o
(OW)
1

o
[\
1

o
| f
?

PN T [y 24 26
Tt »¢ »* L

0.0 S .
00 02 04 06 08 1.0 1.2

r/D

Fig. 5.35 Effect of multivariate species PDF on water mass fraction



5.4 Turbulence-Radiation Interactions

Studies were conducted to investigate the extent of radiative heat transfer in su-
personic turbulent reacting flows undergoing hydrogen-air chemical reactions. For the
temperature range considered in this study, the important radiating species are OH and
H,0. The turbulence models used in this study are the same as in Sec. 5.2 of this chapter
— the turbulence is accounted for via a Reynolds Stress model and the temperature fluc-
tuations are modeled with a Beta-PDF. The radiative interactions have been computed
using the same formulation used in Sec. 5.1 of this chapter — the radiative heat transfer
is simulated with a tangent slab model employing the pseudo-gray formulation. The
chemistry model used in this study is a truncated 7-species, 7-step mechanism, derived
from the first seven reactions in Table 2.1. The resulting formulation is a simple ex-
tension of Sec. 5.2, and the physical model used for the present work is the Jarrett-Pitz

experiment [90].

A schematic diagram of this experiment is given in Fig. 4.1. The temperature and
other exit conditions for the nozzle are given in Table 4.2. The outside diameter of the
nozzle (D = 0.01778 m.) is used to normalize the axial and radial profiles. The length of
the flow domain is taken to be 5.7 diameters. i.e. x = 0.1016 m. Initial profiles for the
flow variables are obtained by computing flat plate solutions. This is carried out separately
for the fuel and air streams and then the two flows are combined. A fixed location of

x/D = 0.85 is chosen since experimental data are available for CFD code validation.

Figure 5.36 shows radial profiles of the streamwise radiative flux qrx. Two interesting
phenomena can be observed here. Firstly, the radiative flux increases in the region of the
flame. This is because radiative heat transfer is a strong function of temperature and H,O

mass fraction. Secondly, the radiative heat transfer is enhanced by accounting for the
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turbulent fluctuations in temperature. In this case, a fixed value of 0.4 for the variance

of the temperature fluctuation is assumed. i.e. 7,,>/7 = 40 %. This parametric approach
is preferred over solving a “g-equation” for the temperature variance. This coupling of

turbulence and radiation is achieved via a Beta PDF for temperature.

Figure 5.37 shows that the effect of radiative heat transfer is to lower the temperature.

This is the “radiative cooling effect” and is strongest only in the flame region.
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Chapter 6

CONCLUSIONS

This study presents a systematic investigation of nonequilibrium processes in super-
sonic combustion. The two-dimensional, elliptic Navier-Stokes equations were used to
investigate supersonic flows with nonequilibrium chemistry and thermodynamics, cou-
pled with radiation, for hydrogen-air systems. The explicit. unsplit MacCormack finite-
difference scheme was used to advance the governing equations in time, until convergence
was achieved. The chemistry source term in the species equation was treated implicitly
to alleviate the stiffness associated with fast reactjons. Specific conclusions of studies

conducted on premixed and non-premixed flows are presented here briefly.

Results obtained for the first part of this study indicate the radiative interactions
varied substantially, depending on reactions involving HO, and NO species, and that this
could have a noticeable influence on the flowfield. Also. it is observed that the difference
in the ignition delays of two chemistry models involving HO; reactions is nullified as a
result of radiative interaction. The results also showed that the streamwise radiative flux
reduces the temperature and concentration of the species. This effect is a strong function

of the amount of 11,0 species concentration.

Results obtained for the second part of this investigation show that the presence of
nonequilibrium in the expansion region of the nozzle. This reduces the temperature,

pressure, species mass fractions as well as the radiative fluxes. The effect of radiative

117
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interactions is to reduce the extent of thermal nonequilibrium due to additional mode of

energy transfer.

Results obtained for the third part of this study indicate that the effect of heat release
is to lower the turbulent shear stress and the mean density. Also, it is noted that the
production of turbulence is a “nonequilibrium™ process. Results obtained for the last
part of this investigation show that the effect of turbulence/radiation interactions is to

enhance the radiative heat transfer.

Based on the present study, several recommendations concerning the extensions of
this work are suggested. Effects of ionization should be included in the thermal nonequi-
librium investigations. Also, effects of anharmonic osciltlators should be considered in
the latter studies. Nongray radiation heat transfer should be investigated and models for
multi-dimensional radiation should be developed. Extensions to other combustion prob-
lems should be carried out. Last but not in the least. effect of species PDF on radiative

interactions should be studied.
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